Multivariate, Multi-frequency and Multimodal: Rethinking Graph Neural Networks for Emotion Recognition in Conversation

Feiyu Chen^{†‡} Jie Shao^{†‡*} Shuyuan Zhu[†] Heng Tao Shen^{†‡}
[†]University of Electronic Science and Technology of China, Chengdu, China
[‡]Sichuan Artificial Intelligence Research Institute, Yibin, China

{chenfeiyu, shaojie, eezsy, shenhengtao}@uestc.edu.cn

Code:https://github.com/feiyuchen7/M3NET

— CVPR 2023

2023. 9. 17 • ChongQing

Motivation

(1) complex multivariate relationships in ERC may not be sufficiently modelled by previous GNN-based methods.

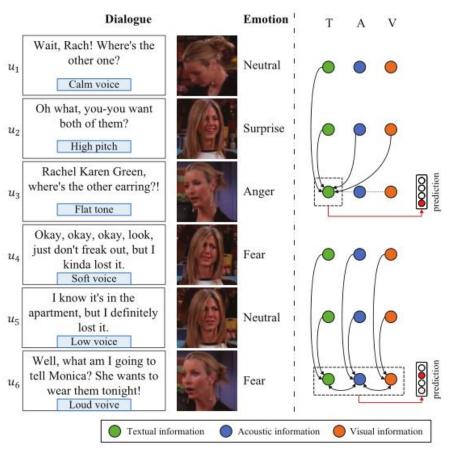


Figure 1. An example of multimodal dialogue (left) and the complex multivariate relationships of u_3 and u_6 (right).

Motivation

(2) It has been shown that the propagation rule of GNNs (i.e., aggregating and smoothing messages from neighbours) is an analogy to a fixed low-pass filter, and it is mainly low-frequency messages that flow in the graph while the effects of high-frequency ones are much weakened

Overview

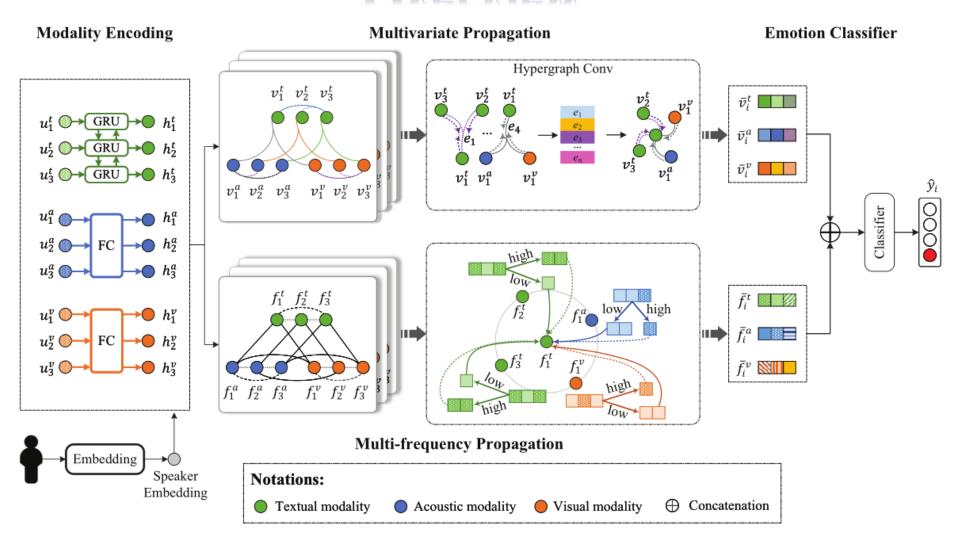
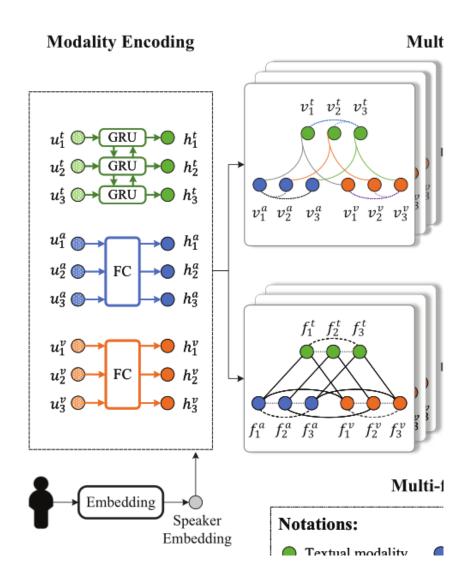


Figure 2. Detailed architecture of the proposed M³Net.



$$S_{i} = W_{s}s_{i},$$

$$c_{i}^{t} = \overrightarrow{GRU}(u_{i}^{t}, c_{i(+,-)1}^{t}),$$

$$c_{i}^{a} = W_{1}u_{i}^{a} + b_{i}^{a},$$

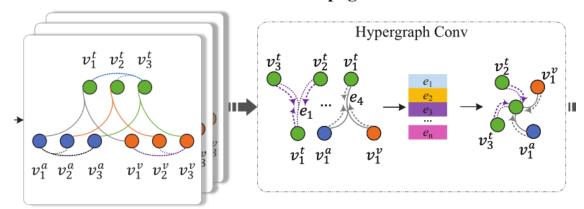
$$c_{i}^{v} = W_{2}u_{i}^{v} + b_{i}^{v},$$

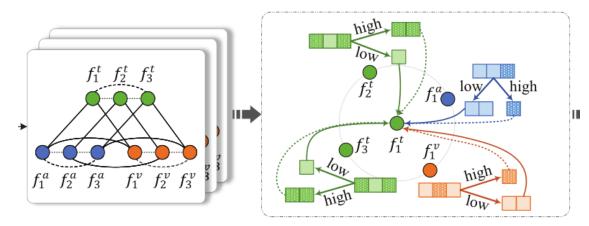
$$h_{i}^{x} = c_{i}^{x} + S_{i}, \quad x \in \{t, a, v\}.$$

$$(2)$$

Method

Multivariate Propagation





Multi-frequency Propagation

$$\hat{\mathbf{H}} = \begin{cases} \gamma_e(v), & \text{if hyperedge } e \text{ is incident with node } v; \\ 0, & \text{otherwise.} \end{cases}$$
 (4)

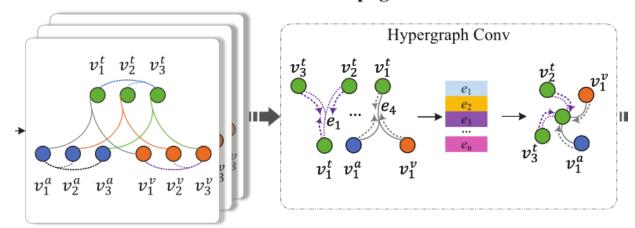
$$\mathbf{V}^{(l+1)} = \sigma(\mathbf{D}_{\mathcal{H}}^{-1}\mathbf{H}\mathbf{W}_{e}\mathbf{B}^{-1}\hat{\mathbf{H}}^{\top}\mathbf{V}^{(l)}), \tag{5}$$

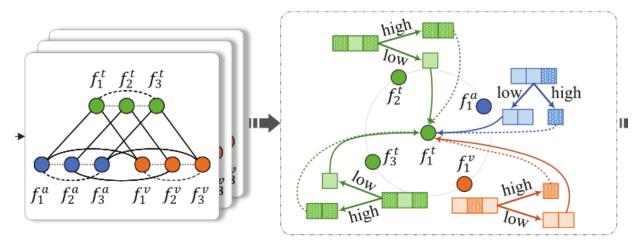
Let $\mathbf{H} \in \mathbb{R}^{|\mathcal{V}_{\mathcal{H}}| \times |\mathcal{E}_{\mathcal{H}}|}$ represent the incidence matrix, in which a nonzero entry $H_{ve} = 1$ indicates that the hyperedge e is incident with the node v; otherwise $H_{ve} = 0$. in which $\mathbf{V}^{(l)} = \{v_{i,(l)}^x|i\in[1,N],x\in\{t,a,v\}\}\in\mathbb{R}^{|\mathcal{V}_{\mathcal{H}}|\times D_h}$ is the input at layer l. σ is a non-linear activation function. $\mathbf{W}_e = \mathrm{diag}(w(e_1),...,w(e_{|\mathcal{E}_{\mathcal{H}}|}))$ is the hyperedge weight matrix. $\mathbf{D}_{\mathcal{H}} \in \mathbb{R}^{|\mathcal{V}_{\mathcal{H}}| \times |\mathcal{V}_{\mathcal{H}}|}$ and $\mathbf{B} \in \mathbb{R}^{|\mathcal{E}_{\mathcal{H}}| \times |\mathcal{E}_{\mathcal{H}}|}$ are the node degree matrix and hyperedge degree matrix,

$$\overline{v_i^t} = v_{i,(L)}^t, \ \overline{v_i^a} = v_{i,(L)}^a, \ \overline{v_i^v} = v_{i,(L)}^v.$$
 (6)

Method

Multivariate Propagation





Multi-frequency Propagation

$$\mathcal{F}_{l} = \mathbf{I} + \mathbf{D}_{\mathcal{G}}^{-1/2} \mathbf{A} \mathbf{D}_{\mathcal{G}}^{-1/2} = 2\mathbf{I} - \mathbf{L},$$

$$\mathcal{F}_{h} = \mathbf{I} - \mathbf{D}_{\mathcal{G}}^{-1/2} \mathbf{A} \mathbf{D}_{\mathcal{G}}^{-1/2} = \mathbf{L}.$$
(7)

$$\mathcal{F}_l *_C \varphi = \mathcal{F}_l \cdot \varphi, \ \mathcal{F}_h *_C \varphi = \mathcal{F}_h \cdot \varphi.$$
 (8)

$$\mathbf{F}^{(k+1)} = \mathbf{R}^{l} (\mathcal{F}_{l} \cdot \mathbf{F}^{(k)}) + \mathbf{R}^{h} (\mathcal{F}_{h} \cdot \mathbf{F}^{(k)})$$

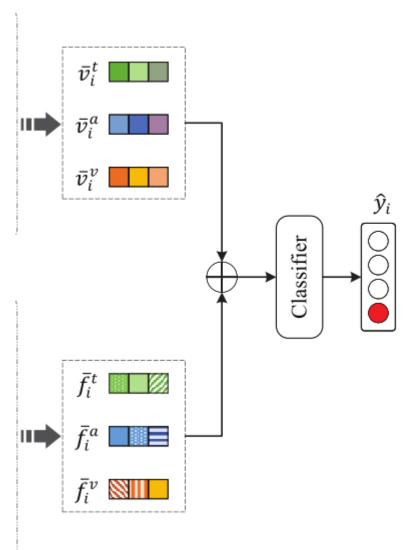
$$= \mathbf{F}^{(k)} + (\mathbf{R}^{l} - \mathbf{R}^{h}) \mathbf{D}_{\mathcal{G}}^{-1/2} \mathbf{A} \mathbf{D}_{\mathcal{G}}^{-1/2} \mathbf{F}^{(k)},$$
(9)

$$f_{i,(k+1)} = f_{i,(k)} + \sum_{j \in \mathcal{N}_i} \frac{r_{ij}^l - r_{ij}^h}{\sqrt{|\mathcal{N}_j|}\sqrt{|\mathcal{N}_i|}} f_{j,(k)}, \qquad (10)$$

$$r_{ij}^l - r_{ij}^h = \tanh(W_3(f_{i,(k)} \oplus f_{j,(k)})).$$
 (11)

$$\overline{f_i^t} = f_{i,(K)}^t, \ \overline{f_i^a} = f_{i,(K)}^a, \ \overline{f_i^v} = f_{i,(K)}^v.$$
 (12)

Emotion Classifier



Method

$$e_{i} = \overline{v_{i}^{t}} \oplus \overline{f_{i}^{t}} \oplus \overline{v_{i}^{a}} \oplus \overline{f_{i}^{a}} \oplus \overline{v_{i}^{v}} \oplus \overline{f_{i}^{v}}, \tag{13}$$

$$\tilde{e}_{i} = \text{ReLU}(e_{i}),$$

$$\mathcal{P}_{i} = \text{softmax}(W_{4}\tilde{e}_{i} + b_{4}), \tag{14}$$

$$\mathcal{P}_{i} = \operatorname{softmax}(W_{4}\tilde{e}_{i} + b_{4}),$$

$$\hat{y}_{i} = \underset{\tau}{\operatorname{argmax}}(\mathcal{P}_{i}[\tau]),$$
(14)

$$L = -\frac{1}{\sum_{s=1}^{Num} c(s)} \sum_{i=1}^{Num} \sum_{j=1}^{c(i)} log \mathcal{P}_{i,j}[y_{i,j}] + \lambda \|\theta\|_2, \quad (15)$$

	Methods	Network	IEMOCAP Average (w)		MELD Average (w)	
			Accuracy	F1	Accuracy	F1
GloVe	CMN [⊲] [14]	Non-GNN	-	58.50	-	-
	ICON* [13]	Non-GNN	64.00	63.50	-	-
	DialogueRNN [†] [24]	Non-GNN	63.51	62.90	59.92	57.60
	MetaDrop [♦] [5]	Non-GNN	65.76	65.58	-	58.30
	DialogueGCN [†] [12]	GNN-based	66.17	66.24	57.01	55.59
	MMGCN [†] [18]	GNN-based	65.80	65.41	60.42	58.31
	MM-DFN [†] [17]	GNN-based	68.21	68.18	59.81	58.42
	M ³ Net (ours)	GNN-based	69.50	69.08	61.65	59.22
RoBERTa	DialogueGCN [†] [12]	GNN-based	63.96	64.44	63.49	62.78
	MMGCN [†] [18]	GNN-based	66.79	66.99	66.63	65.13
	DialogueRNN [♦] [24]	Non-GNN	68.64	68.72	65.94	65.31
	MetaDrop [♦] [5]	Non-GNN	69.38	69.59	66.63	66.30
	MM-DFN [†] [17]	GNN-based	69.87	69.48	67.01	66.17
	M ³ Net (ours)	GNN-based	72.46	72.49	68.28	67.05

	Methods	IEMOCAP		MELD	
	Wethous	Acc.	F1	Acc.	F1
	M^3 Net	72.46	72.49	68.28	67.05
1	w/o multivariate info.	70.06	70.05	67.74	66.36
2	w/o multi-frequency info.	69.87	69.74	67.36	66.03
3	w/o hyperedge weight $\omega(e)$	70.30	70.45	68.11	66.99
4	w/o node weight $\gamma_e(v)$	70.98	71.02	68.05	66.92
5	w/o both weights	70.12	70.09	67.89	66.75
6	$\mathcal{H} o \mathcal{G}$ in series	68.39	68.44	68.20	66.84
7	$\mathcal{G} o \mathcal{H}$ in series	69.50	69.70	68.05	66.85

Table 3. Ablation studies of M³Net.

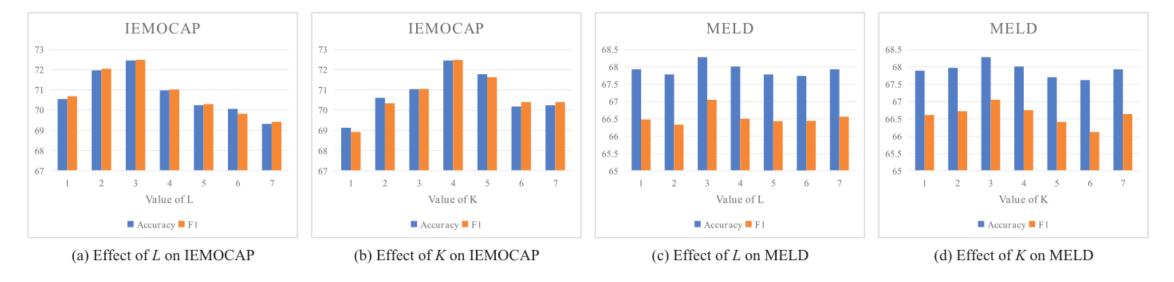


Figure 3. Results of M^3 Net at different graph layers. In (a) and (c), effects of L are tested by fixing K as in the best-performing models. In (b) and (d), effects of K are tested by fixing L as in the best-performing models.

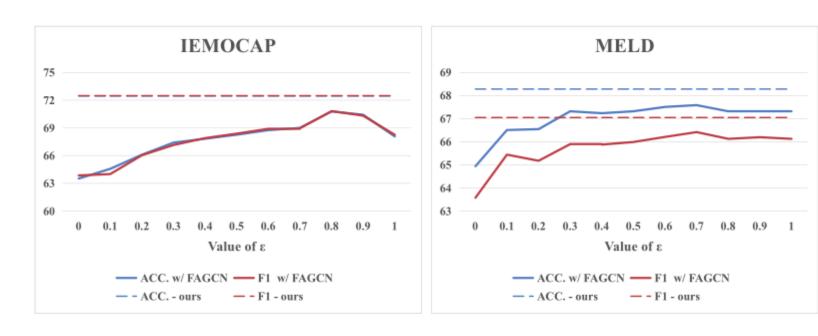


Figure 4. Performance comparison with FAGCN.

Thanks!